Interactive Learner Guide

Cambridge IGCSE ${ }^{\text {TM }} /$ Cambridge $\operatorname{IGCSE}^{\text {TM }}(9-1)$ Mathematics 0580 / 0980

For examination from 2020

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2018
Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

Contents

About this guide 4
Section 1: Syllabus content - what you need to know about 5
Section 2: How you will be assessed 6
Section 3: What skills will be assessed 11
Section 4: Example candidate response 13
Section 5: Revision 24

About this guide

This guide introduces you to your Cambridge IGCSE Mathematics course and how you will be assessed. You should use this guide alongside the support of your teacher.

It will help you to:
\checkmark understand what skills you should develop by taking this course
\checkmark understand how you will be assessed
\checkmark understand what we are looking for in the answers you write
\checkmark plan your revision programme
\checkmark revise, by providing revision tips and an interactive revision checklist (Section 6).

Key benefits

The course will help you to build your skills and knowledge across a range of mathematical techniques. You will be able to develop your problem solving and reasoning skills in a variety of situations.

The Extended course will provide you with a strong foundation to continue to study mathematics qualifications beyond IGCSE. The Core course will equip you with skills needed to support your learning in other subjects and in your general working life.

Section 1: Syllabus content - what you need to know about

This section gives you an outline of the syllabus content for this course. Only the top-level topics of the syllabus have been included here, which are the same for both the Core and Extended courses. In the 'overview' column you are given a very basic idea of what each topic covers. Highlighted cells show Extended-only content.

Learners taking the Extended course need to know all of the Core content as well as some extra content. This extra content requires learners to explore topics and sub-topics of the Core syllabus in more detail, to cover some more complex techniques, and to learn new sub-topics.

Ask your teacher for more detail about each topic, including the differences between the Core and Extended courses. You can also find more detail in the revision checklists in Section 6 of this guide.

Topic	Overview
	Number, sets and Venn diagrams, squares and cubes, directed numbers, fractions, decimals and percentages, ordering, indices, 'four rules', estimates, bounds, ratio, proportion, rate, percentage, time, money and finance. Growth and decay (Extended only).
Algebra and graphs	Basic algebra, algebraic manipulation, equations, formulae sequences, drawing, sketching and interpreting graphs of functions
	Algebraic fractions, harder simultaneous equations, proportion, linear programming, functions, gradients of curves, derived functions and differentiation (Extended only).
Co-ordinate geometry	Straight-line graphs
Vectors and transformations	Vectors (column), transformations
	Magnitude of a vector, represent vectors by directed line segments, position vectors (Extended only).
Geometry	Language, construction, symmetry, angle properties, congruence, similarity
Mensuration	Measures, mensuration
Trigonometry	Bearings, trigonometry in right-angled triangles
Sine rule, cosine rule, trig graphs, solving simple trig equations (Extended only).	
	Probability
	Conditional probability (Extended only).
Statistics	Statistics

Make sure you always check the latest syllabus, which is available at www.cambridgeinternational.org

Section 2: How you will be assessed

You will be assessed at the end of the course using two written examinations. The papers that you will sit are different for the Core and Extended courses.

- Paper 1 - Short-answer questions
- Paper 3 - Structured questions

- Paper 2 - Short-answer questions
- Paper 4 - Structured questions

Make sure you find out from your teacher which course you will be following.

Components at a glance

The table summarises the key information about each component.

Component		How long and how many marks	Skills assessed	Percentage of the qualification
Core	Paper 1 (Short-answer questions)	1 hour 56 marks	Mathematical techniques as listed in the Core syllabus, and applying those techniques to solve problems.	35\%
	Paper 3 (Structured questions)	2 hours 104 marks		65\%
Extended	Paper 2 (Short-answer questions)	1 hour 30 minutes 70 marks	Mathematical techniques as listed in the Core and Extended syllabus, and applying those techniques to solve problems.	35\%
	Paper 4 (Structured questions)	2 hours 30 minutes 130 marks		65\%

About the components

It is important that you understand the different types of question in each paper, so you know what to expect.

Core: Paper 1 (Short-answer questions) and Paper 3 (Structured questions)

You need to answer all questions on each paper.

Paper 1

Paper 1 contains lots of shortanswer questions. These are usually worth 1-3 marks each. Some might be broken up into two parts.

17 Explain why $\sqrt{3}$ is isrational.

[^0]Paper 3 contains structured questions. Each question is split into many parts, with each part usually being worth 1-4 marks. Here for example, question 1 is split over two pages.
Often the answers to later parts will depend on the answers to earlier parts.

Extended: Paper 2 (Short-answer questions) and Paper 4 (Structured questions)

You need to answer all questions on both papers.

Paper 2
Paper 4

Paper 2 questions are short-answer questions. Most questions are worth 1-3 marks, with some being worth 4 or 5 marks. Some questions might be broken up into two parts.

General advice for all Papers

1. Read the questions carefully to make sure that you understand what is being asked.
2. Give your answers to the accuracy indicated in the question. If none is given, and the answer isn't exact, then:

- give your answer to three significant figures $12.3 \checkmark 12.298 x$
- if the answer is in degrees, then give it to one decimal place $\quad 23.1^{\circ} \checkmark 23^{\circ} \mathrm{X}$

3. Include units with your answers if they are not given on the paper. For example, 1 kg of apples costs ... $£ 1.20 \checkmark 1.20$ x
4. Show your working. Show as much working as you can for all your questions.
5. If you make a mistake, clearly cross out any working or answers that you do not want the examiner to mark.
```
=122.4+5.48.9
    =125 \mp@subsup{\textrm{ch}}{}{2}
```


Equipment for the exam

Make sure you have:

- a blue or black pen (a spare pen is always a good idea)
- a pencil (for graphs and diagrams)
- an electronic calculator
- a protractor
- a pair of compasses
- a ruler.

Make sure that you give your answer in the form asked for in the question, e.g. some questions ask for answers to be given in terms of π. For lengths, areas and volumes, give answers in decimals (not in surds or in terms of π) unless you are told to given an exact answer.

Use the value of π from your calculator, or use 3.142, which is given on the front page of the question paper.

You can gain marks for the correct working even if you have an incorrect answer, or cannot complete the whole question.

If you need more space, ask for extra of paper and clearly indicate where the rest of the answer is written. On the additional paper, make it clear which questions(s) you are answering.

Timing

- If you are stuck on a question, don't waste too much time trying to answer it - go on to the next question and come back to the one you are stuck on at the end.
- Use any time that you have left at the end of the exam to go back and check your answers and working.

Section 3: What skills will be assessed

The areas of knowledge, understanding and skills that you will be assessed on are called assessment objectives (AOs). There are two AOs for this course.

AO1
Demonstrate knowledge and understanding of mathematical techniques

AO2
Reason, interpret and communicate mathematically when solving problems

A01 Demonstrate knowledge and understanding of mathematical techniques

You need to show that you can recall and apply mathematical knowledge, terminology and definitions to carry out single or multi-step solutions in mathematical and everyday situations.

This means that you need to show that you can:

- organise, process and present information accurately in written, tabular, graphical and diagrammatic forms
- use and interpret mathematical notation correctly
- perform calculations and procedures by suitable methods, including using a calculator
- understand systems of measurement in everyday use and make use of these

estimate, approximate and work to degrees of accuracy | An example of 'degress of accuracy' include |
| :--- |
| significant figures or decimal places. |
| appropriate to the context and convert between equivalent |
| numerical forms |

- recognise and use spatial relationships in two and three dimensions.

AO1 is assessed in all papers.

AO2 Reason, interpret and communicate mathematically when solving problems

You need to demonstrate that you can analyse a problem, select a suitable strategy and apply appropriate techniques to obtain a solution.

This means that you need to show that you can:

- make logical deductions, make inferences and draw
conclusions from given mathematical data
- recognise patterns and structures in a variety of Recognise and extent patterns situations, and form generalisations
- present arguments and chains of reasoning in a logical and structured way
- interprete and communicate information accurately and change from one form of presentation to another
- assesses the validity of an argument and critically evaluate a given way of presenting information
- solve unstructured problems by putting them into a
 Take information and organise it to answer structured form involving a series of processes a problem.
- apply combinations of mathematical skills and techniques using connections between different areas of mathematics in problem solving
- interprete results in the context of a given problem and evaluate the methods used and solutions obtained.

AO2 is assessed in all papers.

Section 4: Command words

A command word is the part of the question that tells you what you need to do with your knowledge. For example, you might need to describe something, explain something, argue a point of view or list what you know. The table below includes command words used in the assessment for this syllabus. The use of the command word(s) within an question will relate to the context.

Command word	What it means
Calculate	work out from given facts, figures or information, generally using a calculator
Construct	make an accurate drawing
Describe	state the points of a topic/give characteristics and main features
Determine	establish with certainty
Explain	set out purposes or reasons/ make the relationships between things evident/ provide why and/or how and support with relevant evidence
Give	produce an answer from a given source or recall/memory
Plot	provide structured evidence that leads to a given result
Show (that)	make a simple freehand drawing showing the key features
Sketch	calculate from given facts, figures or information with or without the use of a calculator
Work out	give an answer in a specific form
Write	give an answer without significant working
Write down	

The question below is taken from Paper 4 and illustrates the use of two command words.
The command words 'Write down' indicates that you

9 (a) The nth term of a sequence is $8 n-3$.
(i) Write down the first two terms of this sequence. do not need to show your working, and the answer should just be written down. The mark allocation [1] also supports this.
(ii) Show that the number 2013 is not in this sequence.

The command words 'Show that' indicate that you need to provide evidence in the form of a clear mathematical explanation, to demonstrate that you know how to obtain the given result. In other words, you need to show a method that leads to the result.

The answer space in this case does not contain a dotted answer line as there is no single 'answer' to be found. Your working that leads to the given result should be written in the blank working space.

Section 5: Example candidate response

This section takes you through an example question and learner response from one of the 2020 specimen papers for this course. It will help you to identify the command words and other key instructions within questions and to understand what is required in your response.

All information and advice in this section is specific to the example question and response being demonstrated. It should give you an idea of how your responses might be viewed by an examiner but it is not a list of what to do in all questions. In your own examination, you will need to pay careful attention to what each question is asking you to do.

This section is structured as follows:

Question

The command words and instructions in the question have been highlighted and explained. This should help you to understand clearly what is required by the question.

How the answer could have been improved
This summarises what could be done to gain more marks.

Question

The question used in this example is from Specimen Paper 3 (Core). It represents the type of structured question you will see in both Paper 3 (Core) and Paper 4 (Extended). A structured question means that it is broken into several parts. Often, later parts will depend on your answers to earlier parts.

14
8 (a)

(c)

Use trigonometry to calculate the value of p.
 use this method with the given information to find the answer, and that a calculator is needed to solve the problem. If you did not use trigonometry, you would not be awarded any marks.
(d) The diagram shows the path of a plane from airport A to airport B.

(i) Show that the distance between A and B is 375 km .

Show that indicates the answer is given and you need to write down all of the steps in a method that leads to the given answer. You need to provide evidence that you understand and know how the answer is reached.
(ii) The plane flies at an average speed of $450 \mathrm{~km} / \mathrm{h}$.

It leaves A at 1445 and flies directly to B.
Work out the time the plane arrives at B.
Work out indicates that you should calculate the answer from the given information. The mark allocation of 4 marks suggests that you will need to include several steps of working in order to get to the answer.

Mark scheme

Your examination papers will be marked and the overall number of marks for each paper will be recorded. Your marks across all papers will then be converted to a grade.
Final answer: This value is what the examiner expects to see. The answer has to be exactly as given in the mark scheme, unless there are acceptable alternatives. The mark scheme will always make it clear if there are acceptable alternative answers.
Method marks: Sometimes method marks are awarded for lines of working, as well as for the final answer. This means that you could get the final answer incorrect but still get some marks if you include the correct working. The mark scheme does not include all possible methods, so if you use a method not included in the mark scheme but it is accurate and relevant, then the examiner will still award marks for the appropriate parts of the working - unless the questions asks you to use a specific method.

Answer	Mark	Notes
(a)(i) 35 example of a	1	This is the only acceptable answer for this part of the question.
(a)(ii) 74 final answer	1	This is the only acceptable answer for this part of the question.
(b) 43° and correct mathematical reasons	3	Two marks are awarded for the final answer of 43°. The third mark is awarded for a fully correct reason, for example, 'angles on a straight line add up to 180° and 'angles in a triangle add up to 180°. There are other correct reasons that could be also be used. If 43° is not obtained, one method mark can be awarded if the following calculation is seen in the working: $180-128 \text { or } 128-85$
(c) 32.2 or $32.23 \ldots$	2	This is the only acceptable answer for this part of the question. The answer has to be rounded correct to three significant figures, or can be given with more figures in the answer. Those that did not get this answer can score one method mark for showing the following in their working: $\sin =8 \div 15$
(d)(i) $\sqrt{300^{2}+225^{2}}$	2	This does not have to be shown in one step, as long as the method shown is the same as this overall. Those that do not show this can have one method mark for showing the following in their working: $300^{\circ}+225^{\circ}$
(d)(ii) 1535	4	The answer 335 pm is also acceptable for 4 marks. If the correct answer is not found, one method mark is available for showing $375 \div 450$ in their working; and a second method mark can be awarded for sight of them multiplying their answer to this by 60 to change it to hours. A third method mark can be awarded for adding their answer in hours to 1445 - this shows the correct method, so only one mark is lost for an incorrect final answers.

Example candidate response

Now let's look at the sample candidate's response to question 8. The examiner's comments are in the orange boxes. The candidate was awarded $\mathbf{8}$ marks out of 13.

8 (a)

Work out the value of
(i) x,

$$
\begin{equation*}
180-74+71=177 \tag{1}
\end{equation*}
$$

0 out of 1

The candidate's working suggests they understand that the angle sum of a triangle is 180° but they did not include brackets around ' $74+71^{\prime}$. The answer 177° is not sensible for this question.
\qquad
(ii) y

1 out of 1

The candidate recognises that there are parallel lines, and that angle y is a $x=$ 177 y. corresponding angle to angle 74°.
(b)

Work out the value of w.
Give reasons for your answer.
$180-128=52$

2 out of 3

The candidate has given a correct answer for w and shown correct working in two steps. They have given a correct reason for 52° using correct mathematical languge. But they have not provided a reason to explain the angle 43°. They lose a mark for not also stating 'angle sum of a triangle is 180°.
$180-85-52=43$
$w=$
43 because angles on a straight line add up to 180°
(c)

1 out of 2

The candidate has correctly used trigonometry in their method. They are awarded one method mark for the first line of working. However, they have rounded 0.5333333... (the result of $8 \div 15$) to 0.52 , and then calculated the inverse sin of 0.52 rather than 0.5333333 ... This has resulted in an inaccurate final answer. This is called 'premature approximation' and it is a very common error to make.
\qquad
(d) The diagram shows the path of a plane from airport A to airport B.

(i) Show that the distance between A and B is 375 km .
$A B^{2}=300^{2}+225^{2}$
$=140625$
$A B=375$

Abstract

1 out of 2 The candidate has recognised the right-angled triangle and correctly used Pythagoras' theorem in the first line of working. However, they have missed out an important step by not showing that you need to take the square root of 140625 to get 375 . As this is a 'show that' question and they missed a key step in the method, they cannot be awarded full marks as the complete working is not shown. One method mark is earned for the first line.

(ii) The plane flies at an average speed of $450 \mathrm{~km} / \mathrm{h}$.

It leaves A at 1445 and flies directly to B.
Work out the time the plane arrives at B.
$T=\frac{D}{S}=\frac{375}{450}=0.8333333 \ldots$
0.8333333 hours $=0.8333333 \times 60$ minutes $=50$ minutes
arrives at $1445+50 \mathrm{mins}=335$

3 out of 4

The candidate has found the time by correctly dividing the distance by the speed, and recognised that this is in hours. When converting the answer to a decimal, they have not rounded the decimal but left its full value on the calculator to get 50 mins; which is the correct approach. Unfortunately, after converting the time from 24 hour clock to 12 hour clock, they did not include ' pm ' to indicate that the time is in the afternoon, and so the final answer is not quite right. So, 3 marks are awarded for all of a correct method, but a mark is lost due to the accuracy of the final answer.

How the answer could have been improved

This answer could have been improved by

- In part (a)(i) the answer of 177° was not sensible given the diagram in the question. If the candidate had checked their answer for sense they would have realised they had made a mistake. It is always a good idea to check that your answer seems sensible before you move on to another question.
- In part (b) the candidate did all the correct steps but failed to provide both reasons. There were two steps to the method, which should have indicated to the candidate that there were two steps to justify and therefore two reasons should have been provided. The mark allocation for the question [3] also indicates that more than one reason would be required: one mark for the value of 43°, leaving two marks, one mark for each of two reasons. The candidate should have read the question carefully and again, checked their response seemed reasonable.
- In part (c) the candidate rounded an intermediate answer, which affected the accuracy of the final answer. This caused them to lose a mark despite using a correct method. You should only ever round the final answer, do not round intermediate values. If you can, store the intermediate values in your calculator and so that you can use the full value in your calcuations. If you're not able to do this, and you have to round the intermediate values, do not round them to less than three significant figures.
- In part (d)(i) the candidate missed out a step in the method. As this was a 'show that' question, they needed to show all the steps in the method. It's important to show all steps, even if they seem obvious.
- In part (d)(ii) the candidate made a silly error by not stating that the time was 'pm'. When working with time, answers are accepted in either 24 clock or 12 clock time but if you give your answer in the 12 hour clock then it must include am or pm as well.

Common mistakes

There were a number of common mistakes made by other candidates on this question.

- Accuracy of answers

In parts (c) and (d)(ii), a common error was premature rounding - rounding intermediate values in the method before the final answer, which resulted in their final answer not being accurate. Other candidates gave the final answer to less than three significant figures, ignoring the instruction on the front of the paper to round to three significant figures.

- Using incorrect terminology when giving reasons

In part (b), the most common error was to not give full reasons to support the answer. Another common error was to provide a reason that did not use the correct mathematical language, such as 'They add up to $18 \mathbf{0}^{\circ}$ ', and 'It is a straight line', which could not be awarded marks.

- Lack of knowledge

In part (c), a number of candidates had limited knowledge of trigonometry and did not choose the correct trig ratio, which was the sine ratio. This is why good revision is important.

- Not checking answers

In part (a)(i), even though the diagram is drawn NOT TO SCALE, it is possible to see that the angle is an acute angle and should therefore not be bigger than 90°. This should alert candidate that if their answer is over 90° it is not a sensible answer and they should go back and check their working.

- Inefficient method shown

In part (c), the 'Show that' question, a number of candidates omitted an important step from the method; this is often common in 'Show that' questions where every step must be shown no matter how obvious them seem.

General advice

In order to do your best when answering a mathematics question, make sure you:

- revise all of the topics for the syllabus you are studying before the exam
- understand what all the key terms and command words in the question mean
- read the questions carefully and consider what you need to do before you do it
- only round the final answer, not intermediate values
- show all steps in your working, and show them clearly
- round to the correct degree of accuracy
- use the correct mathematical terminology
- check your answers seem reasonable given the context or details of the question.

Section 6: Revision

It is important that you plan your revision in plenty of time for the examinations and that you develop a revision technique that works for you. The advice in this section will help you revise and prepare for the examinations. It is divided into general advice for all papers.

Use the tick boxes \square to keep a record of what you have done, what you plan to do or what you understand.

For more advice on revision, see the Cambridge Learner Revision Guide on our website.

Before the examination

Find out when the examinations are and plan your revision so you have time to revise. Create a revision timetable and divide it into sections to cover each topic.Spend most of your time focussing on specific skills, knowledge or issues that you have found more difficult when practicing them either during revision or earlier in the course.Write a summary of all the key information for a topic - use the checklists at the end of this section.Know the meaning of the command words used in questions and how to apply them to the information given. Look at past examination papers and highlight the command words and check what they mean.Make revision notes and work on practice questions. Reading alone does not work, you need to be active and practice your maths.Work for shorter periods then have a break. Revise small sections of the syllabus at a time but do this regularly.Test yourself by trying out some past exam questions. Use the mark schemes to assess yourself and to be familiar with how marks are awarded for different questions.

Be organised in advance with your notes, texts, exercise books, revision guides and revision websites so you do not waste valuable revision time trying to find things.

Make notes of key mathematical words that you should use in questions that ask you to 'describe' or give 'geometrical reasons for', e.g. in describing transformations or giving reasons in circle theorem questions. Look at the mark schemes for these types of questions from past papers to see how marks are awarded.Make sure you have all of the correct mathematical equipment ready for the exam, particularly your calculator. Make sure you are familiar with the all of the important functions on your calculator.Practice the areas you can do well not just those that you find more difficult

Take breaks and do things to relax when you take your breaks, this will help you to be more productive when you are revising

During the examination

Plan your time according to the marks for each question. For example, a question worth one mark requires less time than a question one worth 4 marks. If a question has several parts, then the parts with more marks will need more time.Read each question very carefully.Identify the command words - you could underline or highlight them.Identify the other key words and information and perhaps underline them too particularly where questions require reasoning or problem solving.Read the questions careully and make you have answered the question that is being asked.Show your working; this is particularly important for questions where you are asked to 'show that ...'.

Set your working out clearly so that it is easy to follow, this makes it easier to keep track of what you have done and makes checking back through your work easier, and it makes it easier for the examiner to mark your work; try to write it in a logical order in the answer space.Write answers clearly; if you want to change an answer then you should cross the answer out and write a replacement; if your answer is on the answer line, cross it out and write the replacement answer above it, do not try to change numbers on the answer line as this can lead to unclear figures.

Check your working and answers to avoid errors.

Give your answer to the appropriate level of accuracy; either the accuracy indicated in the question or the accuracy given on the front of the paper.

Avoid rounding intermediate values part way through your calculation; only round the final answer.Check that the answer that you have given is sensible and realistic for what is being asked.

Use a pencil when drawing diagrams or completing graphs; this means that you can change your answer more easily if you have made a mistake.Take care when reading scales.

If you are asked for reasons for your answer then use the correct mathematical terms.

Use the mark allocation given with the questions/parts of questions to try to judge how much work is needed to answer each part.

On graph questions, straight lines should be ruled and curves should be drawn freehand with a smooth curve.

Don't spend too long on any one part of a question. If you are really stuck on a question, then move on and come back to the question later if you have time. As a rough guide, each mark on the paper should take about one minute.

Top tips for revision of Cambridge IGCSE Mathematics

1. Summarise, recall and apply

Make sure that you can recall and apply the key information and mathematical techniques on each topic that you need for the exam.
i. Write a summary of the key information of a topic.
ii. Collect together some questions that test the knowledge and skills of this topic. Ask your teacher for practice questions or suitable past examination questions, or use practice books or textbooks.
iii. Test your recall by covering over the summary and trying to remember the details, or use the summary as part of the 'Teach the topic' (Tip 3) or 'Question and answer cards' (Tip 4) activities.
iv. After you have spent some time revising and practising the knowledge and skills, answer the questions that you collected together on the topic. You might do this later on the same day as revising, or a few days later. Answer as many questions as you can in order to practise applying your knowledge.
v. Try creating your own questions by adapting existing ones and use these for practice when you return to a topic.

2. Concept maps

Concept maps are a great way to revise the links between different factors or to explore a larger topic. They can also be used to collect together your ideas.
i. Use a blank sheet of paper and turn it on its side (landscape).
ii. Put the topic title in the middle of the page and build the concept map outwards using lines called 'branches'.

- The first branches are from the central topic to sub-topics; draw these as thick lines.
- Add new branches from the sub-topics to include more detail; draw these as thinner lines.
- Add even more detail to a point by adding more branches.

This creates a hierarchy of information from 'overview' (the thick branches) to 'fine detail' (thinnest branches).
iii. Write single key words or phrases along a branch and add drawings for visual impact.
iv. Use different colours, highlighter pens, symbols and arrows to highlight key facts or issues.

It is a good idea to use a large piece of plain A3 (or larger) paper and lots of coloured pens.

3. Teach the topic

This is a very simple but effective technique that focusses on knowledge recall. It tests the brain and rehearses the information you need to know for a certain topic and so will help your revision.
i. Create some topic cards with key bullet points of information on. Leave space for ticks.
ii. Give these to your parents, family or friends for example.
iii. Give yourself 10 minutes maximum to teach your audience the main points of the topic. You could use a miniwhiteboard or flip chart to help.
iv. Your audience tick off all the points you mention in your presentation and give you a final score.

The brain loves competition, so if you do not score full marks, you can try again the next day, or compete against friends. This system of repeat and rehearsal is very effective, especially with more complex topics, and doesn't take much preparation.

4. Question and answer (Q\&A) cards

This is very similar to 'Teach the topic' but less formal and less public for those who dislike performing in front of others. It tests knowledge recall and rehearses the information you need to know for a certain topic.
i. Pick a topic and create two sets of cards: question cards and answer cards. You might find it helpful to make the question cards a different size or use different coloured card for answers.
ii. Make sure you have the topic, or something appropriate depending on what you are focusing on, as a heading on each card. The questions should test your knowledge and understanding of key areas of the course.
iii. A friend or family member uses the cards to test you in short 5 or 10 minute periods at any time during the day.
iv. You could also do this alone by reading the questions to yourself, giving the answer and then checking the correct answer card.
v. This game can be adapted by using the cards to find matching pairs: turn all cards face down across the space in front of you. Turn over two cards, leaving them where they are. If they match (one is a question card and the other is the corresponding answer card) pick up the pair and put them to one side. If they don't match, try to remember where they are and what is on each card, then turn them back over. Turn over two other cards. Continue until you have matched all pairs.

5. Question paper and mark schemes

Looking at past question papers and the mark scheme helps you to familiarise yourself with what to expect and what the standard is.
i. Ask your teacher for past paper questions with mark schemes for the course - ask your teacher for help to make sure you are answering the correct questions and to simplify the mark scheme.
ii. Look at the revision checklist and identify which topic a given question relates to - you might need to ask your teacher to help you do this.
iii. Once you have finished revising a topic or unit, time yourself answering some appropriate exam questions. Check the mark schemes to see how well you would have scored, or give the answers to your teacher to check.
iv. Add details or notes to the mark scheme where you missed out on marks in your original answers using a different coloured pen. Use these notes when you revise and try the question again later.
You can find plenty of past exam papers and mark schemes on the Cambridge International public website:
http://www.cambridgeinternational.org/programmes-and-qualifications/cambridge-igcse-mathematics-0580/ past-papers/

Other useful revision advice for Cambridge IGCSE Mathematics

- Before the exam, make sure that you are familiar with your calculator, and confident in using it.
- Look at the Example Candidate Response earlier in this guide. Can you identify the strengths of the response and where they have made mistakes or lost marks?
- When you are attempting a past paper (or questions from a past paper), complete it without referring to your notes so that you get a true idea of your strengths and weaknesses. Then, go back through the paper using your notes and a different coloured pen to make corrections and changes. After you have done as much as you can on the paper, mark it using the mark scheme. Take notes of any points that you lost marks on.
- Don't just revise the topics that you enjoy and are confident in. If you identify an area that you are weaker in then try to revisit the topic by reviewing your notes and doing some practice questions, then use exam questions to check whether you now understand.
- Return to topics later in your revision to check that you still remember and understand the topic, and to help to ensure that you recall more of the material when you get to the examination.

Revision checklists for Cambridge IGCSE Mathematics

The tables on the following pages can be used as a revision checklist. They do not contain all the detailed knowledge you need to know, just an overview. For more detail see the syllabus and talk to your teacher.

You can use the tick boxes in the checklists to show when you have revised and are happy that you do not need to return to it. Tick the ' R ', ' A ', and ' G ' column to record your progress, as follows:

- $R=$ RED means you are really unsure and lack confidence in that area; you might want to focus your revision here and possibly talk to your teacher for help
- A = AMBER means you are reasonably confident in a topic but need some extra practice
- $G=G R E E N$ means you are very confident in a topic

As your revision progresses, you can concentrate on the RED and AMBER topics, in order to turn them into GREEN topics. You might find it helpful to highlight each topic in red, orange or green to help you prioritise.

You can use the 'Comments' column to:

- add more information about the details for each point
- include a reference to a useful resource
- include a list of formulae or notation
- add learning aids such as rhymes, poems or word play
- highlight areas of difficulty or things that you need to talk to your teacher about.

There is a set of checklist for the Core syllabus and a different set for the Extended syllabus.

Core: Number

Category	You should be able to	R	A	G	Comments
Number	Identify and use: - natural numbers - integers (positive, negative and zero) - prime numbers - write a number as a product of its prime factors - square numbers and cube numbers - common factors and highest common factor of two numbers - common multiples and lowest common multiple of two numbers - rational numbers - irrational numbers (e.g. $\pi, \sqrt{ } 2$) - real numbers - reciprocals			\square \square	

Core: Number

Question type	You should be able to	R	A	G	Comments
Sets and Venn diagrams	Understand notation of Venn diagrams$\begin{aligned} & \text { Definition of sets } \\ & \begin{array}{l} \text { e.g. } \quad A=\{x: x \text { is a natural number }\} \\ \\ B=\{a, b, c \ldots\} \end{array} \end{aligned}$Notation Number of elements in set A $\mathrm{n}(A)$ Universal set E Union of A and B $\mathrm{A} \cup \mathrm{B}$ Intersection of A and B $\mathrm{A} \cap \mathrm{B}$				
Squares, square roots, cubes and cube roots	Calculate: - squares and cubes of numbers - square roots and cube roots of numbers				

Core: Number

Core: Number

Question type	You should be able to	R	G	Comments
Four rules $(+-\times \div)$	Use the four rules for calculations with: - whole numbers - decimals - vulgar and mixed fractions - correct ordering of operations (BIDMAS) and use of brackets			
Estimates	Make estimates of numbers, quantities and lengths Give approximations to a specified number of: - significant figures - decimal places Round off answers to reasonable accuracy in the context of a given problem			
Bounds	Give upper and lower bounds for data given to a specified accuracy, e.g. measured lengths			
Ratio, proportion, rate	Understand ratio Divide a quantity in a given ratio Understand direct and inverse proportion Use scales in practical situations Use common measures of rate (formulae for other rates, e.g. density and pressure will be given in the question) Calculate average speed		\square \square	

Core: Number

Core: Number

Core: Algebra and graphs

Core: Algebra and graphs

Core: Algebra and graphs

Question type	You should be able to	R	A	G	Comments
Graphs of functions (links to Co-ordinate geometry)	Construct tables of values for functions of the form: - $a x+b$ (linear) - $\pm x^{2}+a x+b$ (quadratic) - $\frac{a}{x}(x \neq 0)$ (reciprocal) where a and b are integer constants Draw and interpret such graphs Solve linear and quadratic equations approximately by graphical methods Recognise and sketch the graphs of linear and quadratic functions				

Core: Co-ordinate geometry

Question type You should be able to		R	A	G	Comments
Co-ordinates	Work with co-ordinates in two dimensions				
Gradients	Find the gradient of a straight line graph				
Equation of straight line	Interpret and obtain the equation of a straight line graph in the form $y=m x+c$ where the graph is given				
Parallel lines	Determine the equation of a straight line parallel to a given line e.g. find the equation of a line parallel to $y=4 x-1$ that passes through ($0,-3$).				

Core: Geometry

Question type	You should be able to	R	A	G	Comments
Geometrical constructions	Measure and draw lines and angles Construct a triangle given the three sides, using a ruler and a pair of compasses only			\square	
Scale drawings	Read and make scale drawings				
Similar figures	Calculate lengths of similar figures				
Congruent	Recognise congruent shapes				
Symmetry	Recognise symmetry properties for triangles, quadrilaterals and circles Recognise line symmetry in two dimensions Recognise and find the order of rotational symmetry in two dimensions				

Core: Geometry

Core: Mensuration

Core: Mensuration

Question type You should be able to		R	A	G	Comments
Circles	Carry out calculations involving circumference and area of a circle Solve simple problems involving the arc length and sector area of a circle where the sector angle is a factor of 360°.				
Surface area and volume	Carry out calculations involving: - surface area and volume of a cuboid, prism and cylinder (no formulae will be given for these shapes) - surface area and volume of a sphere, pyramid and cone (formulae will be given for these shapes)				
Areas and volumes of compound shapes	Carry out calculations involving the areas and volumes of compound shapes made from combinations of the shapes in 'Perimeter' or 'Surface area and volume'.				

Core: Trigonometry

Question type	You should be able to	R	A	G	Comments
Bearings	Use and interpret three-figure bearings measured clockwise from the North, i.e. $000^{\circ}-360^{\circ}$				
Trigonometry	Find unknown sides and/or angles in right-angled triangles by applying: - Pythagoras' theorem - sine, cosine and tangent ratios for acute angles in rightangled triangles				

Core: Vectors and transformations

Core: Probability

Question type	You should be able to	R	A	G	Comments
Single events	Calculate the probability of a single event as a fraction, decimal or percentage (not a ratio)				
Probability scale	Understand and use the probability scale from 0 to 1				
Sum to 1	Understand that the probability of an event occurring $=1$ - the probability of the event not occurring				
Relative frequency	Understand relative frequency as an estimate of probability Work out expected frequencies using relative frequency				
Combined events	Calculate the probability of simple combined events using: - tree diagrams - possibility diagrams (points on a grid) - Venn diagrams (2 sets only)				

Core: Statistics

Question type	What I need to do	R	A	G	Comments
Classify	Collect, classify and tabulate data				
Interpret and compare	Read, interpret and draw simple inferences from tables and statistical diagrams Compare sets of data using - tables - graphs - statistical measures. Be aware of restrictions when making conclusions from data.			\square	
Charts	Construct and use: - bar charts - pie charts - pictograms - stem-and-leaf diagrams - frequency distributions - histograms with equal intervals - scatter diagrams		 \square 	\square \square	

Extended syllabus content (includes required Core content)

Extended: Number

Extended: Number

Extended: Number

Question type	You should be able to	R	A	G	Comments
Squares, square roots, cubes and cube roots	Calculate: - squares of numbers - square roots of numbers - cubes of numbers - cube roots of numbers - other powers and roots of numbers				
Directed numbers	Use directed numbers in practical situations, for example temperature changes				
Fractions, decimals and percentages	Use the language and notation of simple vulgar and decimal fractions and percentages in appropriate contexts Recognise equivalent fractions, decimals and percentages Convert between fractions, decimals and percentages Convert recurring decimals to fractions				
Ordering	Order quantities by magnitude and demonstrate familiarity with the symbols $=, \neq,>,<, \geqslant, \leqslant$				

Extended: Number

Extended: Number

Question type	You should be able to	R	A	G	Comments
Estimates	Make estimates of numbers, quantities and lengths Give approximations to a specified number of: - significant figures - decimal places Round off answers to reasonable accuracy in the context of a given problem				
Bounds	Give upper and lower bounds for data given to a specified accuracy, e.g. measured lengths Obtain appropriate upper and lower bounds to solutions of simple problems given to a specified accuracy, e.g. the lower and upper bounds for the area of a rectangle				
Ratio, proportion, rate (links to Direct and inverse proportion)	Understand ratio Divide quantities in a given ratio Increase and decrease a quantity by a given ratio Understand numerical problems involving direct and inverse proportion Use ratio and scales in practical situations Use common measures of rate (formulae for other rates, e.g. density and pressure will be given in the question) Calculate average speed				

Extended: Number

Question t	What I need to do	R	A	G	Comments
Percentages	Calculate a percentage of a quantity Express one quantity as a percentage of another quantity Calculate percentage increase or decrease Calculate reverse percentages, e.g. finding the cost price given the selling price and the percentage profit				
Use of an electronic calculator	Use a calculator efficiently Check accuracy of calculations				
Time	Calculate times in terms of the 24-hour and 12-hour clock Read clocks, dials and timetables				
Money	Calculate using money Convert from one currency to another				

Extended: Number

Question type	You should be able to	R	A	G	Comments
Personal and small business finance	Use given data to solve problems on: - earnings - simple interest - compound interest - you must know the compound interest formula - discount - profit and loss Extract data from tables and charts		\square 		
Exponential growth and decay	Use exponential growth and decay in population and finance, e.g. depreciation, bacteria growth	\square			

Extended: Algebra and graphs

Extended: Algebra and graphs

Question type	You should be able to	R	A	G	Comments
Algebraic fractions	Manipulate algebraic fractions, e.g. - $\frac{x}{3}+\frac{x-4}{2}$ - $\frac{2 x}{3}+\frac{3(x-5)}{2}$ - $\frac{3 a}{4}+\frac{5 a b}{3}$ - $\frac{3 a}{4} \div \frac{9 a}{10}$ - $\frac{1}{x-2}+\frac{2}{x-3}$ Factorise and simplify algebraic fractions such as $\frac{x^{2}-2 x}{x^{2}-5 x+6}$				
Rules of indices	Use and interpret positive, negative and zero indices Use and interpret fractional indices, e.g. solve $32^{x}=2$ Use the rules of indices to simplify algebra, e.g. $\begin{aligned} & 3 x^{-4} \times \frac{2}{3} x^{\frac{1}{2}} \\ & \frac{2}{5} x^{\frac{1}{2}} \div 2 x^{-2} \\ & \left(\frac{2 x^{5}}{3}\right)^{3} \end{aligned}$				

Extended: Algebra and graphs

Question typ	You should be able to	R	A	G	Comments
Equations and inequalities	- Derive and solve simple linear equations in one unknown - Derive and solve simultaneous linear equations in two unknowns - Derive and solve simultaneous equations involving one linear and one quadratic Solve quadratic equations by: - factorisation - completing the square - using the formula Derive and solve simple linear inequalities, including representing solutions on a number line				
Linear programming	Represent inequalities graphically, including using the conventions of - broken lines for strict inequalities - shading unwanted regions Solve simple linear programming problems using graphical representations of inequalities				

Extended: Algebra and graphs

Extended: Algebra and graphs

Question ty	You should be able to	R	A	G	Comments
Practical graphs (links to Coordinate geometry) continued	Apply the idea of rate of change to simple kinematics involving: - distance-time graphs - speed-time graphs - acceleration and deceleration This may involve estimation and interpretation of the gradient of a tangent at a point Calculate distance travelled as an area under a linear speedtime graph				

Extended: Algebra and graphs

Question type	You should be able to	R	A	G	Comments
Graphs of functions (links to Coordinate geometry)	Construct tables of values and draw graphs for functions of the form: - $a x^{n}$ where a is a rational constant and $n=-2,-1,0,1,2,3$ and simple sums of not more than three of these - $a b^{x}+c$ where a and c are rational constants and b is a positive integer Solve associated equations approximately by graphical methods, including finding and interpreting roots and finding turning points of quadratics by completing the square Draw and interpret graphs representing exponential growth and decay problems Recognise, sketch and interpret graphs of: - linear - quadratic - cubic - reciprocal - exponential (knowledge of turning points and asymtotes is required)			\square \square \square \square \square \square 	
Tangents	Estimate gradients of curves by drawing tangents				

Extended: Algebra and graphs

| Question type | \quad You should be able to |
| :--- | :--- | :--- |
| Functions | Us function notation, e.g. |
| Find inverse functions $\mathrm{f}^{-1}(x)$ | |
| Form composite functions as defined by $\operatorname{gf}(x)=\mathrm{g}(\mathrm{f}(x)$) | |

Extended: Co-ordinate geometry

Question type	You should be able to	R	A	G	Comments
Straight line graphs	Work with co-ordinates in two dimensions				
Gradient	Find the gradient of a straight line graph Calculate the gradient of a straight line from the co-ordinates of two points on it				
Length and midpoint	Calculate the length and the co-ordinates of the midpoint of a straight line segment from the co-ordinates of its end points				
Equation of line	Interpret and obtain the equation of a straight line graph				
Parallel lines	Determine the equation of a straight line parallel to a given line, e.g. find the equation of a line parallel to $\mathrm{y}=4 x-1$ that passes through $(0,-3)$.				
Perpendicular lines	Find the gradient of parallel and perpendicular lines, e.g. - find the gradient of a line perpendicular to $y=3 x+1$ - find the equation of a line perpendicular to one passing through the co-ordinates $(1,3)$ and $(-2,-9)$.				

Extended: Geometry

Learner Guide

Extended: Geometry

Question type	What I need to do	R	A	G	Comments
Geometrical constructions	Measure and draw lines and angles Construct a triangle given the three sides, using a ruler and a pair of compasses only				
Scale drawings	Read and make scale drawings				
Similar figures	Calculate lengths of similar figures Use relationships between areas of similar triangles and in similar figures Use relationships between volumes and surface areas of similar solids				
Congruent triangles	Use the congruence criteria for triangles (SSS, ASA, SAS, RHS)				
Symmetry	Recognise symmetry properties for triangles, quadrilaterals and circles Recognise line symmetry in two dimensions Recognise and find the order of rotational symmetry in two dimensions				

Extended: Geometry

Question	You should be able to	R	A	G	Comments
Symmetry (continued)	Use the following symmetry properties of circles: - equal chords are equidistant from the centre - perpendicular bisector of a chord passes through the centre - tangents from an external point are equal in length Recognise and use symmetry properties of: - prism, cylinder, cone and pyramid				

Extended: Geometry

Extended: Mensuration

Question	What I need to do	R	A	G	Comments
Measures	Use current units of: - mass - length - area - volume - capacity Express quantities in terms of smaller or larger units, including units of area and volume				
Perimeter	Carry out calculations involving: - perimeter and area of a rectangle - perimeter and area of a triangle - perimeter and area of parallelogram - perimeter and area of a trapezium - perimeter and area of compound shapes made by combining rectangles, triangles, parallelograms and/or trapeziums				

Extended: Mensuration

Question type	You should be able to	R	A	G	Comments
Circles	Carry out calculations involving circumference and area of a circle Solve problems involving arc length and sector area of a circle				
Surface area and volume	Carry out calculations involving: - surface area and volume of a cuboid, prism and cylinder (no formulae will be given for these shapes) - surface area and volume of a sphere, pyramid and cone (formulae will be given for these shapes)				
Compound shapes	Carry out calculations involving: - area of a shape made by combining cuboids, prisms and/or cylinders - volume of a shape made by combining cuboids, prisms and/ or cylinders			\qquad	

Extended: Trigonometry

Question type	You should be able to	R	A	G	Comments
Bearings	Use and interpret three-figure bearings measured clockwise from the North, i.e. $000^{\circ}-360^{\circ}$				
Trigonometry	Find unknown sides and/or angles in right-angled triangles by applying: - Pythagoras' theorem - sine, cosine and tangent ratios for acute angles in rightangled triangles Solve problems in two dimensions involving angles of elevation and depression Know that the perpendicular distance from a point to a line is the shortest distance to the line				
Trig graphs and equations	Recognise, sketch and interpret graphs of simple trigonometric functions Graph and know the properties of trigonometric functions Solve simple trigonometric equations for values between 0° and 360°, e.g. Solve $\sin x=\frac{\sqrt{3}}{2}$ for values of x between 0° and 360°				
General trig	Solve problems using sine and cosine rules for any triangle Find the area of any triangle using $1 / 2 a b \sin C$				
Trig in 3D	Solve simple trigonometrical problems in three dimensions including angle between a line and a plane				

Extended: Vectors and transformations

Extended: Vectors and transformations

Extended: Probability

Question type	You should be able to	R	A	G	Comments
Probability (links to Four rules)	Calculate the probability of a single event as a fraction, decimal or percentage (not a ratio)				
Probability scale	Understand and use the probability scale from 0 to 1				
Sum to 1	Understand that the probability of an event occurring $=1$ - the probability of the event not occurring				
Relative frequency	Understand relative frequency as an estimate of probability Work out expected frequencies using relative frequency				
Combined events	Calculate the probability of combined events using: - tree diagrams - possibility diagrams - tables				

Extended: Statistics

Question ty	You should be able to	R	A	G	Comments
Classify	Collect, classify and tabulate data				
Interpret and compare	Read, interpret and draw simple inferences from tables and statistical diagrams Compare sets of data using - tables - graphs - statistical measures Be aware of restrictions when making conclusions from data				
Charts	Construct and use - bar charts - pie charts - pictograms - stem - and - leaf diagrams - frequency distributions - histograms with equal and unequal intervals - scatter diagrams			\square	

Extended: Statistics

Question type	You should be able to	R	A	G	Comments
Averages	Calculate, for individual and discrete data - mean - median - mode - range and distinguish between their use				
Estimated mean	Calculate an estimate of the mean for grouped and continuous data Identify the modal class from a grouped frequency distribution				
Cumulative frequency	Construct and use cumulative frequency diagrams to estimate and interpret - the median - percentiles - quartiles - inter-quartile range Construct and interpret box-and-whisker plots				
Correlation	Understand what is meant by positive, negative and zero correlation with reference to a scatter diagram				
Lines of best fit	Draw, interpret and use a ruled line of best fit by eye				

Cambridge Assessment International Education
1 Hills Road, Cambridge, CB1 2EU, United Kingdom
t: +44 1223553554
e: info@cambridgeinternational.org www.cambridgeinternational.org

[^0]: 4 (a) Write 6789 correct to the nearest 100.
 (b) Write 6789 correct to 3 significant figures.

